Technology Science Information Networks Computing

Lecturer: Ting Wang (王挺)

利物浦大学计算机博士 清华大学计算机博士后 电子信息技术高级工程师 上海外国语大学网络与新媒体副教授 浙江清华长三角研究院海纳认知与智能研究中心主任

Chapter 8

Classification: Basic Concepts

1. What is classification

a form of data analysis that extracts models describing data classes.

Steps:

- 1. Learning. Training data are analyzed by a classification algorithm.
- 2. Classification. Test data are used to estimate the accuracy of the classification rules

2. Supervise learning (监督学习) and unsupervised learning (无监督学习) supervise learning:

- the learning of the classifier is "supervised" in that it is told to which class each training tuple belongs unsupervised learning (clustering):
- the class label of each training tuple is not known, and the number or set of classes to be learned may not be known in advance

Chapter 8

3. Decision Tree Induction

Basic algorithm (a greedy algorithm)

- Conditions for stopping partitioning
 All samples for a given node belong to the same class
 There are no remaining attributes for further
- partitioning majority voting is employed for classifying the leaf
- There are no samples left

Ref:

https://blog.csdn.net/neilgy/article/details/82746270

Algorithm: Generate_decision_tree. Generate a decision tree from the training tuples of data partition, D.

Input:

- Data partition, D, which is a set of training tuples and their associated class labels;
- attribute_list, the set of candidate attributes;
- Attribute_selection_method, a procedure to determine the splitting criterion that "best" partitions the data tuples into individual classes. This criterion consists of a splitting_attribute and, possibly, either a split-point or splitting subset.

Output: A decision tree.

Method:

- create a node N;
- if tuples in D are all of the same class, C, then
- (3)return N as a leaf node labeled with the class C;
- (4) if attribute_list is empty then
- (5)return N as a leaf node labeled with the majority class in D; // majority voting
- (6)apply Attribute_selection_method(D, attribute_list) to find the "best" splitting_criterion;
- label node N with splitting_criterion;
- if splitting_attribute is discrete-valued and
 - multiway splits allowed then // not restricted to binary trees
- (9) attribute_list ← attribute_list − splitting_attribute; // remove splitting_attribute
- (10) for each outcome j of splitting_criterion
 - // partition the tuples and grow subtrees for each partition
- (11)let D_i be the set of data tuples in D satisfying outcome j; // a partition
- if D_i is empty then (12)
- attach a leaf labeled with the majority class in *D* to node *N*; (13)
- else attach the node returned by Generate_decision_tree(D_i , attribute_list) to node N; (14)endfor
- (15) return N;

Basic algorithm for inducing a decision tree from training tuples.

4. Information Gain

$$Gain(A) = Info(D) - Info_A(D).$$
 (8.3)

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j).$$
(8.2)

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i),$$
 (8.1)

5. Naïve Bayes Classifier

- ① Let D be a training set of tuples and their associated class labels, and each tuple is represented by an n-D attribute vector $\mathbf{X} = (x_1, x_2, ..., x_n)$
- ② Suppose there are m classes C_1 , C_2 , ..., C_m .

Classification is to derive the maximum posteriori, i.e., the maximal $P(C_i|\mathbf{X})$

This can be derived from Bayes' theorem

$$P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$$

③ Since P(X) is constant for all classes, only

$$P(C_i|\mathbf{X}) = P(\mathbf{X}|C_i)P(C_i)$$

needs to be maximized

6. Rule-based classification与decision tree

Ref:

https://blog.csdn.net/weixin_42555080/article/details/91401493

7. Rule Generation

sequential covering algorithm

Algorithm: Sequential covering. Learn a set of IF-THEN rules for classification.

Input:

- D, a data set of class-labeled tuples;
- Att_vals, the set of all attributes and their possible values.

Output: A set of IF-THEN rules.

Method:

- (1) $Rule_set = \{\}; // initial set of rules learned is empty$
- (2) for each class c do
- (3) repeat
- 1) Rule = Learn_One_Rule(D, Att_vals , c);
- (5) remove tuples covered by *Rule* from *D*;
- (6) $Rule_set = Rule_set + Rule$; // add new rule to rule set
- (7) until terminating condition;
- (8) endfor
- (9) return *Rule_Set*;

Basic sequential covering algorithm.

8. Classification model evaluation

Measure	Formula
accuracy, recognition rate	$\frac{TP+TN}{P+N}$
error rate, misclassification rate	$\frac{FP + FN}{P + N}$
sensitivity, true positive rate, recall	$\frac{TP}{P}$
specificity, true negative rate	$\frac{TN}{N}$
precision	$\frac{TP}{TP+FP}$
<i>F</i> , <i>F</i> ₁ , <i>F</i> -score, harmonic mean of precision and recall	$\frac{2 \times precision \times recall}{precision + recall}$
F_{β} , where β is a non-negative real number	$\frac{(1+\beta^2) \times precision \times recall}{\beta^2 \times precision + recall}$

Evaluation measures. Note that some measures are known by more than one name. TP, TN, FP, P, N refer to the number of true positive, true negative, false positive, positive, and negative samples, respectively (see text).

9. Bagging与Boosting

- Bagging: averaging the prediction over a collection of classifiers
- Boosting: weighted vote with a collection of classifiers

区别:

1) 样本选择上:

Bagging:训练集是在原始集中有放回选取的,从原始集中选出的各轮训练集之间是独立的。

Boosting:每一轮的训练集不变,只是训练集中每个样例在分类器中的权重发生变化。而权值是根据上一轮的分类结果进行调整。

2) 样例权重:

Bagging: 使用均匀取样,每个样例的权重相等

Boosting: 根据错误率不断调整样例的权值,错误率越大则权重越大。

3) 预测函数:

Bagging: 所有预测函数的权重相等。

Boosting:每个弱分类器都有相应的权重,对于分类误差小的分类器会有更大的权重。

4) 并行计算:

Bagging: 各个预测函数可以并行生成

Boosting: 各个预测函数只能顺序生成, 因为后一个模型参数需要前一轮模型的结果。

5) bagging是减少variance, 而boosting是减少bias

10. Adaboost

11. Random forest

Algorithm: AdaBoost. A boosting algorithm—create an ensemble of classifiers. Each one gives a weighted vote.

Input:

- \square D, a set of d class-labeled training tuples;
- \blacksquare *k*, the number of rounds (one classifier is generated per round);
- a classification learning scheme.

Output: A composite model.

Method:

- initialize the weight of each tuple in D to 1/d;
- (2) for i = 1 to k do l/ for each round:
- (3) sample D with replacement according to the tuple weights to obtain D_i ;
- (4) use training set D_i to derive a model, M_i ;
- (5) compute $error(M_i)$, the error rate of M_i (Eq. 8.34)
- (6) if $error(M_i) > 0.5$ then
- (7) go back to step 3 and try again;
- (8) endif
- (9) for each tuple in D_i that was correctly classified do
- (10) multiply the weight of the tuple by $error(M_i)/(1 error(M_i))$; // update weights
- (11) normalize the weight of each tuple;
- (12) endfor

To use the ensemble to classify tuple, X:

- (1) initialize weight of each class to 0;
- (2) for i = 1 to k do // for each classifier:
- (3) $w_i = log \frac{1 error(M_i)}{error(M_i)}$; // weight of the classifier's vote
- (4) $c = M_i(X)$; // get class prediction for X from M_i
- (5) add w_i to weight for class c
- (6) endfor
- (7) return the class with the largest weight;

AdaBoost, a boosting algorithm.

12. Imbalanced Data

- (1) oversampling,
- (2) undersampling,
- (3) threshold moving,
- (4) ensemble techniques

